Skip to content

1. 两数之和 简单

作者:Choi Yang
更新于:3 个月前
字数统计:427 字
阅读时长:2 分钟
阅读量:

题目描述

Tags array | hash-table
Companies adobe | airbnb | amazon | apple | bloomberg | dropbox | facebook | linkedin | microsoft | uber | yahoo | yelp

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:

输入:nums = [3,2,4], target = 6
输出:[1,2]
输入:nums = [3,2,4], target = 6
输出:[1,2]

示例 3:

输入:nums = [3,3], target = 6
输出:[0,1]
输入:nums = [3,3], target = 6
输出:[0,1]

提示:

2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
只会存在一个有效答案
2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
只会存在一个有效答案

进阶:你可以想出一个时间复杂度小于 O(n2) 的算法吗?

解题思路

js
/**
 * @param {number[]} nums
 * @param {number} target
 * @return {number[]}
 */
const twoSum = function (nums, target) {
  const hash = []
  for (const i in nums) {
    if (hash[target - nums[i]])
      return [hash[target - nums[i]], i]

    hash[nums[i]] = i
  }
}
/**
 * @param {number[]} nums
 * @param {number} target
 * @return {number[]}
 */
const twoSum = function (nums, target) {
  const hash = []
  for (const i in nums) {
    if (hash[target - nums[i]])
      return [hash[target - nums[i]], i]

    hash[nums[i]] = i
  }
}
c#
public class Solution {
    public int[] TwoSum(int[] nums, int target) {
        var hash = new Dictionary<int, int>();
        for (var i = 0; i < nums.Length; i++) {
            if (hash.ContainsKey(target - nums[i])) return new int[] { hash[target - nums[i]], i };

            hash[nums[i]] = i;
        }

        return null;
    }
}
public class Solution {
    public int[] TwoSum(int[] nums, int target) {
        var hash = new Dictionary<int, int>();
        for (var i = 0; i < nums.Length; i++) {
            if (hash.ContainsKey(target - nums[i])) return new int[] { hash[target - nums[i]], i };

            hash[nums[i]] = i;
        }

        return null;
    }
}
java
class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> map = new HashMap<>();
        for (int i = 0; i < nums.length; i++) {
            int complement = target - nums[i];
            if (map.containsKey(complement)) {
                return new int[] { map.get(complement), i };
            }
            map.put(nums[i], i);
        }
        throw new IllegalArgumentException("No two sum solution");
    }
}
class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> map = new HashMap<>();
        for (int i = 0; i < nums.length; i++) {
            int complement = target - nums[i];
            if (map.containsKey(complement)) {
                return new int[] { map.get(complement), i };
            }
            map.put(nums[i], i);
        }
        throw new IllegalArgumentException("No two sum solution");
    }
}
python
class Solution:
  def twoSum(self, nums: List[int], target: int) -> List[int]:
      hash = {}
      for i, num in enumerate(nums):
          if target - num in hash:
              return [hash[target - num], i]
          hash[num] = i
      return []
class Solution:
  def twoSum(self, nums: List[int], target: int) -> List[int]:
      hash = {}
      for i, num in enumerate(nums):
          if target - num in hash:
              return [hash[target - num], i]
          hash[num] = i
      return []

Contributors

Choi Yang